本教程从 Java 基础到实战,带你掌握大数据分析技能。包括 Java 基础(变量、控制流、类等),大数据工具(Hadoop 生态系统、Spark、Hive),以及实战案例:从 OpenFlights 获取航班数据。使用 Hadoop 读取和处理数据,分析航班目的地最频繁的机场。使用 Spark 深入分析,查找到达目的地最晚的航班。使用 Hive 交互式分析数据,统计每个机场的航班数量。
Java 基础入门到实战应用:大数据实战分析
引言
随着大数据时代的到来,掌握大数据分析技能变得至关重要。本教程将带领你从 Java 基础入门到使用 Java 进行大数据实战分析。
Java 基础
大数据分析工具
实战案例:使用 Java 分析航班数据
步骤 1:获取数据
从 OpenFlights 数据集下载航班数据。
步骤 2:使用 Hadoop 读写数据
使用 Hadoop 和 MapReduce 读取和处理数据。
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlightStats { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Flight Stats"); job.setJarByClass(FlightStats.class); job.setMapperClass(FlightStatsMapper.class); job.setReducerClass(FlightStatsReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } public static class FlightStatsMapper extends Mapper<Object, Text, Text, IntWritable> { @Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String[] line = value.toString().split(","); context.write(new Text(line[1]), new IntWritable(1)); } } public static class FlightStatsReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(key, new IntWritable(sum)); } } }
步骤 3:使用 Spark 进一步分析
使用 Spark DataFrame 和 SQL 查询分析数据。
import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; public class FlightStatsSpark { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("Flight Stats Spark").getOrCreate(); Dataset<Row> flights = spark.read().csv("hdfs:///path/to/flights.csv"); flights.createOrReplaceTempView("flights"); Dataset<Row> top10Airports = spark.sql("SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10"); top10Airports.show(10); } }
步骤 4:使用 Hive 交互式查询
使用 Hive 交互式查询分析数据。
CREATE TABLE flights (origin STRING, dest STRING, carrier STRING, dep_date STRING, dep_time STRING, arr_date STRING, arr_time STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; LOAD DATA INPATH 'hdfs:///path/to/flights.csv' OVERWRITE INTO TABLE flights; SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10;
结论
通过本教程,你已经掌握了 Java 基础和使用 Java 进行大数据实战分析的技能。通过了解 Hadoop、Spark 和 Hive,你能够高效地分析大数据集,从中提取有价值的见解。
以上是Java基础入门到实战应用:大数据实战分析的详细内容。更多信息请关注PHP中文网其他相关文章!