Python随机生成信用卡卡号的实现方法
本文实例讲述了Python随机生成信用卡卡号的实现方法。分享给大家供大家参考。具体分析如下:
这段Python代码根据信用卡卡号产生规则随机生成信用卡卡号,是可以通过验证的,仅供学习参考,请不要用于非法用途,否则后果自负。
#!/usr/bin/python """ gencc: A simple program to generate credit card numbers that pass the MOD 10 check (Luhn formula). Usefull for testing e-commerce sites during development. Copyright 2003-2012 Graham King This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ # Different naming convention, because translated from PHP # pylint: disable=C0103 from random import Random import copy visaPrefixList = [ ['4', '5', '3', '9'], ['4', '5', '5', '6'], ['4', '9', '1', '6'], ['4', '5', '3', '2'], ['4', '9', '2', '9'], ['4', '0', '2', '4', '0', '0', '7', '1'], ['4', '4', '8', '6'], ['4', '7', '1', '6'], ['4']] mastercardPrefixList = [ ['5', '1'], ['5', '2'], ['5', '3'], ['5', '4'], ['5', '5']] amexPrefixList = [['3', '4'], ['3', '7']] discoverPrefixList = [['6', '0', '1', '1']] dinersPrefixList = [ ['3', '0', '0'], ['3', '0', '1'], ['3', '0', '2'], ['3', '0', '3'], ['3', '6'], ['3', '8']] enRoutePrefixList = [['2', '0', '1', '4'], ['2', '1', '4', '9']] jcbPrefixList = [['3', '5']] voyagerPrefixList = [['8', '6', '9', '9']] def completed_number(prefix, length): """ 'prefix' is the start of the CC number as a string, any number of digits. 'length' is the length of the CC number to generate. Typically 13 or 16 """ ccnumber = prefix # generate digits while len(ccnumber) < (length - 1): digit = str(generator.choice(range(0, 10))) ccnumber.append(digit) # Calculate sum sum = 0 pos = 0 reversedCCnumber = [] reversedCCnumber.extend(ccnumber) reversedCCnumber.reverse() while pos < length - 1: odd = int(reversedCCnumber[pos]) * 2 if odd > 9: odd -= 9 sum += odd if pos != (length - 2): sum += int(reversedCCnumber[pos + 1]) pos += 2 # Calculate check digit checkdigit = ((sum / 10 + 1) * 10 - sum) % 10 ccnumber.append(str(checkdigit)) return ''.join(ccnumber) def credit_card_number(rnd, prefixList, length, howMany): result = [] while len(result) < howMany: ccnumber = copy.copy(rnd.choice(prefixList)) result.append(completed_number(ccnumber, length)) return result def output(title, numbers): result = [] result.append(title) result.append('-' * len(title)) result.append('\n'.join(numbers)) result.append('') return '\n'.join(result) # # Main # generator = Random() generator.seed() # Seed from current time print("darkcoding credit card generator\n") mastercard = credit_card_number(generator, mastercardPrefixList, 16, 10) print(output("Mastercard", mastercard)) visa16 = credit_card_number(generator, visaPrefixList, 16, 10) print(output("VISA 16 digit", visa16)) visa13 = credit_card_number(generator, visaPrefixList, 13, 5) print(output("VISA 13 digit", visa13)) amex = credit_card_number(generator, amexPrefixList, 15, 5) print(output("American Express", amex)) # Minor cards discover = credit_card_number(generator, discoverPrefixList, 16, 3) print(output("Discover", discover)) diners = credit_card_number(generator, dinersPrefixList, 14, 3) print(output("Diners Club / Carte Blanche", diners)) enRoute = credit_card_number(generator, enRoutePrefixList, 15, 3) print(output("enRoute", enRoute)) jcb = credit_card_number(generator, jcbPrefixList, 16, 3) print(output("JCB", jcb)) voyager = credit_card_number(generator, voyagerPrefixList, 15, 3) print(output("Voyager", voyager))
运行结果如下:
darkcoding credit card generator Mastercard ---------- 5249241445603178 5474662131739768 5581517450441661 5588253309068355 5514774944030079 5122826749528287 5152966434002124 5268127987312292 5385676074198087 5330181839518097 VISA 16 digit ------------- 4539503803848378 4716973052847436 4556149936260376 4486565514724761 4556309354978160 4486560485591158 4916213564870669 4486704671699934 4532839100193192 4486613519985266 VISA 13 digit ------------- 4929905559973 4556870828321 4916868200216 4556189916056 4024007171180 American Express ---------------- 376197656730660 342421777432696 342896016604918 343458311286898 374543958196088 Discover -------- 6011676180456692 6011298953567876 6011699666196053 Diners Club / Carte Blanche --------------------------- 30066643308583 38302315481859 38251784096120 enRoute ------- 214935400146170 201435309964331 201450317314858 JCB --- 3506641780149880 3561856856065701 3508395818816022 Voyager ------- 869984254736122 869938197246102 869921075232782
希望本文所述对大家的Python程序设计有所帮助。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

XML 美化本质上是提高其可读性,包括合理的缩进、换行和标签组织。其原理是通过遍历 XML 树,根据层级增加缩进,并处理空标签和包含文本的标签。Python 的 xml.etree.ElementTree 库提供了方便的 pretty_xml() 函数,可以实现上述美化过程。

用大多数文本编辑器即可打开XML文件;若需更直观的树状展示,可使用 XML 编辑器,如 Oxygen XML Editor 或 XMLSpy;在程序中处理 XML 数据则需使用编程语言(如 Python)与 XML 库(如 xml.etree.ElementTree)来解析。

无法找到一款将 XML 直接转换为 PDF 的应用程序,因为它们是两种根本不同的格式。XML 用于存储数据,而 PDF 用于显示文档。要完成转换,可以使用编程语言和库,例如 Python 和 ReportLab,来解析 XML 数据并生成 PDF 文档。

没有APP可以将所有XML文件转成PDF,因为XML结构灵活多样。XML转PDF的核心是将数据结构转换为页面布局,需要解析XML并生成PDF。常用的方法包括使用Python库(如ElementTree)解析XML,并利用ReportLab库生成PDF。对于复杂XML,可能需要使用XSLT转换结构。性能优化时,考虑使用多线程或多进程,并选择合适的库。

直接在手机上将XML转换为PDF并不容易,但可以借助云端服务实现。推荐使用轻量级手机App上传XML文件并接收生成的PDF,配合云端API进行转换。云端API使用无服务器计算服务,选择合适的平台至关重要。处理XML解析和PDF生成时需要考虑复杂性、错误处理、安全性和优化策略。整个过程需要前端App与后端API协同工作,需要对多种技术有所了解。

想要通过XML生成图片,需要使用图形库(如Pillow、JFreeChart)作为桥梁,根据XML中的元数据(尺寸、颜色)生成图片。控制图片大小的关键在于调整XML中<width>和<height>标签的值。然而,在实际应用中,XML结构的复杂性、图形绘制的精细度、图片生成的速度和内存消耗,以及图片格式的选择,都对生成的图片大小产生影响,因此需要深入理解XML结构、熟练掌握图形库,以及考虑优化算法和图片格式选择等因素。

XML 转换图片需要先确定 XML 数据结构,再选择合适的图形化库(如 Python 的 matplotlib)和方法,根据数据结构选择可视化策略,考虑数据量和图片格式,进行分批处理或使用高效库,最终根据需求保存为 PNG、JPEG 或 SVG 等格式。

没有简单、直接的免费手机端XML转PDF工具。需要的数据可视化过程涉及复杂的数据理解和渲染,市面上所谓的“免费”工具大多体验较差。推荐使用电脑端的工具或借助云服务,或自行开发App以获得更靠谱的转换效果。
