python计算最大优先级队列实例
代码如下:
# -*- coding: utf-8 -*-
class Heap(object):
@classmethod
def parent(cls, i):
"""父结点下标"""
return int((i - 1) >> 1);
@classmethod
def left(cls, i):
"""左儿子下标"""
return (i
@classmethod
def right(cls, i):
"""右儿子下标"""
return (i
class MaxPriorityQueue(list, Heap):
@classmethod
def max_heapify(cls, A, i, heap_size):
"""最大堆化A[i]为根的子树"""
l, r = cls.left(i), cls.right(i)
if l A[i]:
largest = l
else:
largest = i
if r A[largest]:
largest = r
if largest != i:
A[i], A[largest] = A[largest], A[i]
cls.max_heapify(A, largest, heap_size)
def maximum(self):
"""返回最大元素,伪码如下:
HEAP-MAXIMUM(S)
1 return A[1]
T(n) = O(1)
"""
return self[0]
def extract_max(self):
"""去除并返回最大元素,伪码如下:
HEAP-EXTRACT-MAX(A)
1 if heap-size[A] 2 then error "heap underflow"
3 max ← A[1]
4 A[1] ← A[heap-size[A]] // 尾元素放到第一位
5 heap-size[A] ← heap-size[A] - 1 // 减小heap-size[A]
6 MAX-HEAPIFY(A, 1) // 保持最大堆性质
7 return max
T(n) = θ(lgn)
"""
heap_size = len(self)
assert heap_size > 0, "heap underflow"
val = self[0]
tail = heap_size - 1
self[0] = self[tail]
self.max_heapify(self, 0, tail)
self.pop(tail)
return val
def increase_key(self, i, key):
"""将i处的值增加到key,伪码如下:
HEAP-INCREASE-KEY(A, i, key)
1 if key 2 the error "new key is smaller than current key"
3 A[i] ← key
4 while i > 1 and A[PARENT(i)] 5 do exchange A[i] ↔ A[PARENT(i)] // 交换两元素
6 i ← PARENT(i) // 指向父结点位置
T(n) = θ(lgn)
"""
val = self[i]
assert key >= val, "new key is smaller than current key"
self[i] = key
parent = self.parent
while i > 0 and self[parent(i)] self[i], self[parent(i)] = self[parent(i)], self[i]
i = parent(i)
def insert(self, key):
"""将key插入A,伪码如下:
MAX-HEAP-INSERT(A, key)
1 heap-size[A] ← heap-size[A] + 1 // 对元素个数增加
2 A[heap-size[A]] ← -∞ // 初始新增加元素为-∞
3 HEAP-INCREASE-KEY(A, heap-size[A], key) // 将新增元素增加到key
T(n) = θ(lgn)
"""
self.append(float('-inf'))
self.increase_key(len(self) - 1, key)
if __name__ == '__main__':
import random
keys = range(10)
random.shuffle(keys)
print(keys)
queue = MaxPriorityQueue() # 插入方式建最大堆
for i in keys:
queue.insert(i)
print(queue)
print('*' * 30)
for i in range(len(keys)):
val = i % 3
if val == 0:
val = queue.extract_max() # 去除并返回最大元素
elif val == 1:
val = queue.maximum() # 返回最大元素
else:
val = queue[1] + 10
queue.increase_key(1, val) # queue[1]增加10
print(queue, val)
print([queue.extract_max() for i in range(len(queue))])

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

手机XML转PDF的速度取决于以下因素:XML结构的复杂性手机硬件配置转换方法(库、算法)代码质量优化手段(选择高效库、优化算法、缓存数据、利用多线程)总体而言,没有绝对的答案,需要根据具体情况进行优化。

不可能直接在手机上用单一应用完成 XML 到 PDF 的转换。需要使用云端服务,通过两步走的方式实现:1. 在云端转换 XML 为 PDF,2. 在手机端访问或下载转换后的 PDF 文件。

C语言中没有内置求和函数,需自行编写。可通过遍历数组并累加元素实现求和:循环版本:使用for循环和数组长度计算求和。指针版本:使用指针指向数组元素,通过自增指针遍历高效求和。动态分配数组版本:动态分配数组并自行管理内存,确保释放已分配内存以防止内存泄漏。

无法找到一款将 XML 直接转换为 PDF 的应用程序,因为它们是两种根本不同的格式。XML 用于存储数据,而 PDF 用于显示文档。要完成转换,可以使用编程语言和库,例如 Python 和 ReportLab,来解析 XML 数据并生成 PDF 文档。

可以将 XML 转换为图像,方法是使用 XSLT 转换器或图像库。XSLT 转换器:使用 XSLT 处理器和样式表,将 XML 转换为图像。图像库:使用 PIL 或 ImageMagick 等库,从 XML 数据创建图像,例如绘制形状和文本。

XML格式化工具可以将代码按照规则排版,提高可读性和理解性。选择工具时,要注意自定义能力、对特殊情况的处理、性能和易用性。常用的工具类型包括在线工具、IDE插件和命令行工具。

XML 转换图片需要先确定 XML 数据结构,再选择合适的图形化库(如 Python 的 matplotlib)和方法,根据数据结构选择可视化策略,考虑数据量和图片格式,进行分批处理或使用高效库,最终根据需求保存为 PNG、JPEG 或 SVG 等格式。

没有APP可以将所有XML文件转成PDF,因为XML结构灵活多样。XML转PDF的核心是将数据结构转换为页面布局,需要解析XML并生成PDF。常用的方法包括使用Python库(如ElementTree)解析XML,并利用ReportLab库生成PDF。对于复杂XML,可能需要使用XSLT转换结构。性能优化时,考虑使用多线程或多进程,并选择合适的库。
