JavaScript数据结构和算法之二叉树详解_基础知识
二叉树的概念
二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
二叉树的特点
每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。二叉树中每一个节点都是一个对象,每一个数据节点都有三个指针,分别是指向父母、左孩子和右孩子的指针。每一个节点都是通过指针相互连接的。相连指针的关系都是父子关系。
二叉树节点的定义
二叉树节点定义如下:
struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
};
二叉树的五种基本形态
空二叉树
只有一个根结点
根结点只有左子树
根结点只有右子树
根结点既有左子树又有右子树
拥有三个结点的普通树只有两种情况:两层或者三层。但由于二叉树要区分左右,所以就会演变成如下的五种形态:
特殊二叉树
斜树
如上面倒数第一副图的第2、3小图所示。
满二叉树
在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。如下图所示:
完全二叉树
完全二叉树是指最后一层左边是满的,右边可能满也可能不满,然后其余层都是满的。一个深度为k,节点个数为 2^k - 1 的二叉树为满二叉树(完全二叉树)。就是一棵树,深度为k,并且没有空位。
完全二叉树的特点有:
叶子结点只能出现在最下两层。
最下层的叶子一定集中在左部连续位置。
倒数第二层,若有叶子结点,一定都在右部连续位置。
如果结点度为1,则该结点只有左孩子。
同样结点树的二叉树,完全二叉树的深度最小。
注意:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。
算法如下:
bool is_complete(tree *root)
{
queue q;
tree *ptr;
// 进行广度优先遍历(层次遍历),并把NULL节点也放入队列
q.push(root);
while ((ptr = q.pop()) != NULL)
{
q.push(ptr->left);
q.push(ptr->right);
}
// 判断是否还有未被访问到的节点
while (!q.is_empty())
{
ptr = q.pop();
// 有未访问到的的非NULL节点,则树存在空洞,为非完全二叉树
if (NULL != ptr)
{
return false;
}
}
return true;
}
二叉树的性质
二叉树的性质一:在二叉树的第i层上至多有2^(i-1)个结点(i>=1)
二叉树的性质二:深度为k的二叉树至多有2^k-1个结点(k>=1)
二叉树的顺序存储结构
二叉树的顺序存储结构就是用一维数组存储二叉树中的各个结点,并且结点的存储位置能体现结点之间的逻辑关系。
二叉链表
既然顺序存储方式的适用性不强,那么我们就要考虑链式存储结构啦。二叉树的存储按照国际惯例来说一般也是采用链式存储结构的。
二叉树每个结点最多有两个孩子,所以为它设计一个数据域和两个指针域是比较自然的想法,我们称这样的链表叫做二叉链表。
二叉树的遍历
二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。
二叉树的遍历有三种方式,如下:
(1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。简记根-左-右。
(2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树。简记左-根-右。
(3)后序遍历(LRD),首先遍历左子树,然后遍历右子树,最后访问根结点。简记左-右-根。
前序遍历:
若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。
遍历的顺序为:A B D H I E J C F K G
//先序遍历
function preOrder(node){
if(!node == null){
putstr(node.show()+ " ");
preOrder(node.left);
preOrder(node.right);
}
}
中序遍历:
若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结点),中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树。
遍历的顺序为:H D I B E J A F K C G
//使用递归方式实现中序遍历
function inOrder(node){
if(!(node == null)){
inOrder(node.left);//先访问左子树
putstr(node.show()+ " ");//再访问根节点
inOrder(node.right);//最后访问右子树
}
}
后序遍历:
若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后访问根结点。
遍历的顺序为:H I D J E B K F G C A
//后序遍历
function postOrder(node){
if(!node == null){
postOrder(node.left);
postOrder(node.right);
putStr(node.show()+ " ");
}
}
实现二叉查找树
二叉查找树(BST)由节点组成,所以我们定义一个Node节点对象如下:
function Node(data,left,right){
this.data = data;
this.left = left;//保存left节点链接
this.right = right;
this.show = show;
}
function show(){
return this.data;//显示保存在节点中的数据
}
查找最大和最小值
查找BST上的最小值和最大值非常简单,因为较小的值总是在左子节点上,在BST上查找最小值,只需遍历左子树,直到找到最后一个节点
查找最小值
function getMin(){
var current = this.root;
while(!(current.left == null)){
current = current.left;
}
return current.data;
}
该方法沿着BST的左子树挨个遍历,直到遍历到BST最左的节点,该节点被定义为:
current.left = null;
这时,当前节点上保存的值就是最小值
查找最大值
在BST上查找最大值只需要遍历右子树,直到找到最后一个节点,该节点上保存的值就是最大值。
function getMax(){
var current = this.root;
while(!(current.right == null)){
current = current.right;
}
return current.data;
}

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

Java中比较复杂数据结构时,使用Comparator提供灵活的比较机制。具体步骤包括:定义比较器类,重写compare方法定义比较逻辑。创建比较器实例。使用Collections.sort方法,传入集合和比较器实例。

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

一、58画像平台建设背景首先和大家分享下58画像平台的建设背景。1.传统的画像平台传统的思路已经不够,建设用户画像平台依赖数据仓库建模能力,整合多业务线数据,构建准确的用户画像;还需要数据挖掘,理解用户行为、兴趣和需求,提供算法侧的能力;最后,还需要具备数据平台能力,高效存储、查询和共享用户画像数据,提供画像服务。业务自建画像平台和中台类型画像平台主要区别在于,业务自建画像平台服务单条业务线,按需定制;中台平台服务多条业务线,建模复杂,提供更为通用的能力。2.58中台画像建设的背景58的用户画像

数据结构和算法是Java开发的基础,本文深入探讨Java中的关键数据结构(如数组、链表、树等)和算法(如排序、搜索、图算法等)。这些结构通过实战案例进行说明,包括使用数组存储分数、使用链表管理购物清单、使用栈实现递归、使用队列同步线程以及使用树和哈希表进行快速搜索和身份验证等。理解这些概念可以编写高效且可维护的Java代码。

AVL树是一种平衡二叉搜索树,确保快速高效的数据操作。为了实现平衡,它执行左旋和右旋操作,调整违反平衡的子树。AVL树利用高度平衡,确保树的高度相对于节点数始终较小,从而实现对数时间复杂度(O(logn))的查找操作,即使在大型数据集上也能保持数据结构的效率。

计数,听起来简单,却在实际执行很有难度。想象一下,你被送到一片原始热带雨林,进行野生动物普查。每当看到一只动物,拍一张照片。数码相机只是记录追踪动物总数,但你对独特动物的数量感兴趣,却没有统计。那么,若想获取这一独特动物数量,最好的方法是什么?这时,你一定会说,从现在开始计数,最后再从照片中将每一种新物种与名单进行比较。然而,这种常见的计数方法,有时并不适用于高达数十亿条目的信息量。来自印度统计研究所、UNL、新加坡国立大学的计算机科学家提出了一种新算法——CVM。它可以近似计算长列表中,不同条
