目录 搜索
前言 何为PostgreSQL? PostgreSQL简史 格式约定 更多信息 臭虫汇报指导 I. 教程 章1. 从头开始 1.1. 安装 1.2. 体系基本概念 1.3. 创建一个数据库 1.4. 访问数据库 章2. SQL语言 2.1. 介绍 2.2. 概念 2.3. 创建新表 2.4. 向表中添加行 2.5. 查询一个表 2.6. 表间链接 2.7. 聚集函数 2.8. 更新 2.9. 删除 章3. 高级特性 3.1. 介绍 3.2. 视图 3.3. 外键 3.4. 事务 3.5. 窗口函数 3.6. 继承 3.7. 结论 II. SQL语言 章4. SQL语法 4.1. 词法结构 4.2. 值表达式 4.3. 调用函数 章5. 数据定义 5.1. 表的基本概念 5.2. 缺省值 5.3. 约束 5.4. 系统字段 5.5. 修改表 5.6. 权限 5.7. 模式 5.8. 继承 5.9. 分区 5.10. 其它数据库对象 5.11. 依赖性跟踪 章 6. 数据操作 6.1. 插入数据 6.2. 更新数据 6.3. 删除数据 章7. 查询 7.1. 概述 7.2. 表表达式 7.3. 选择列表 7.4. 组合查询 7.5. 行排序 7.6. LIMIT和OFFSET 7.7. VALUES列表 7.8. WITH的查询(公用表表达式) 章8. 数据类型 8.1. 数值类型 8.2. 货币类型 8.3. 字符类型 8.4. 二进制数据类型 8.5. 日期/时间类型 8.6. 布尔类型 8.7. 枚举类型 8.8. 几何类型 8.9. 网络地址类型 8.10. 位串类型 8.11. 文本搜索类型 8.12. UUID类型 8.13. XML类型 8.14. 数组 8.15. 复合类型 8.16. 对象标识符类型 8.17. 伪类型 章 9. 函数和操作符 9.1. 逻辑操作符 9.2. 比较操作符 9.3. 数学函数和操作符 9.4. 字符串函数和操作符 9.5. 二进制字符串函数和操作符 9.6. 位串函数和操作符 9.7. 模式匹配 9.8. 数据类型格式化函数 9.9. 时间/日期函数和操作符 9.10. 支持枚举函数 9.11. 几何函数和操作符 9.12. 网络地址函数和操作符 9.13. 文本检索函数和操作符 9.14. XML函数 9.15. 序列操作函数 9.16. 条件表达式 9.17. 数组函数和操作符 9.18. 聚合函数 9.19. 窗口函数 9.20. 子查询表达式 9.21. 行和数组比较 9.22. 返回集合的函数 9.23. 系统信息函数 9.24. 系统管理函数 9.25. 触发器函数 章10. 类型转换 10.3. 函数 10.2. 操作符 10.1. 概述 10.4. 值存储 10.5. UNION 章11. 索引 11.1. 介绍 11.2. 索引类型 11.3. 多字段索引 11.4. 索引和ORDER BY 11.5. 组合多个索引 11.6. 唯一索引 11.7. 表达式上的索引 11.8. 部分索引 11.9. 操作类和操作簇 11.10. 检查索引的使用 章12. Full Text Search 12.1. Introduction 12.2. Tables and Indexes 12.3. Controlling Text Search 12.4. Additional Features 12.5. Parsers 12.6. Dictionaries 12.7. Configuration Example 12.8. Testing and Debugging Text Search 12.9. GiST and GIN Index Types 12.10. psql Support 12.11. Limitations 12.12. Migration from Pre-8.3 Text Search 章13. 并发控制 13.1. 介绍 13.2. 事务隔离 13.3. 明确锁定 13.4. 应用层数据完整性检查 13.5. 锁和索引 章14. 性能提升技巧 14.1. 使用EXPLAIN 14.2. 规划器使用的统计信息 14.3. 用明确的JOIN语句控制规划器 14.4. 向数据库中添加记录 14.5. 非持久性设置 III. 服务器管理 章15. 安装指导 15.1. 简版 15.2. 要求 15.3. 获取源码 15.4. 升级 15.5. 安装过程 15.6. 安装后的设置 15.7. 支持的平台 15.8. 特殊平台的要求 章16. Installation from Source Code on Windows 16.1. Building with Visual C++ or the Platform SDK 16.2. Building libpq with Visual C++ or Borland C++ 章17. 服务器安装和操作 17.1. PostgreSQL用户帐户 17.2. 创建数据库集群 17.3. 启动数据库服务器 17.4. 管理内核资源 17.5. 关闭服务 17.6. 防止服务器欺骗 17.7. 加密选项 17.8. 用SSL进行安全的TCP/IP连接 17.9. Secure TCP/IP Connections with SSH Tunnels 章18. 服务器配置 18.1. 设置参数 18.2. 文件位置 18.3. 连接和认证 18.4. 资源消耗 18.5. 预写式日志 18.6. 查询规划 18.7. 错误报告和日志 18.8. 运行时统计 18.9. 自动清理 18.10. 客户端连接缺省 18.12. 版本和平台兼容性 18.11. 锁管理 18.13. 预置选项 18.14. 自定义的选项 18.15. 开发人员选项 18.16. 短选项 章19. 用户认证 19.1. pg_hba.conf 文件 19.2. 用户名映射 19.3. 认证方法 19.4. 用户认证 章20. 数据库角色和权限 20.1. 数据库角色 20.2. 角色属性 20.3. 权限 20.4. 角色成员 20.5. 函数和触发器 章21. 管理数据库 21.1. 概述 21.2. 创建一个数据库 21.3. 临时库 21.4. 数据库配置 21.5. 删除数据库 21.6. 表空间 章22. 本土化 22.1. 区域支持 22.2. 字符集支持 章23. 日常数据库维护工作 23.1. Routine Vacuuming日常清理 23.2. 经常重建索引 23.3. 日志文件维护 章24. 备份和恢复 24.1. SQL转储 24.2. 文件系统级别的备份 24.3. 在线备份以及即时恢复(PITR) 24.4. 版本间迁移 章25. 高可用性与负载均衡,复制 25.1. 不同解决方案的比较 25.2. 日志传送备份服务器 25.3. 失效切换 25.4. 日志传送的替代方法 25.5. 热备 章26. 恢复配置 26.1. 归档恢复设置 26.2. 恢复目标设置 26.3. 备服务器设置 章27. 监控数据库的活动 27.1. 标准Unix工具 27.2. 统计收集器 27.3. 查看锁 27.4. 动态跟踪 章28. 监控磁盘使用情况 28.1. 判断磁盘的使用量 28.2. 磁盘满导致的失效 章29. 可靠性和预写式日志 29.1. 可靠性 29.2. 预写式日志(WAL) 29.3. 异步提交 29.4. WAL配置 29.5. WAL内部 章30. Regression Tests 30.1. Running the Tests 30.2. Test Evaluation 30.3. Variant Comparison Files 30.4. Test Coverage Examination IV. 客户端接口 章31. libpq-C库 31.1. 数据库联接函数 31.2. 连接状态函数 31.3. 命令执行函数 31.4. 异步命令处理 31.5. 取消正在处理的查询 31.6. 捷径接口 31.7. 异步通知 31.8. 与COPY命令相关的函数 31.9. Control Functions 控制函数 31.10. 其他函数 31.11. 注意信息处理 31.12. 事件系统 31.13. 环境变量 31.14. 口令文件 31.15. 连接服务的文件 31.16. LDAP查找连接参数 31.17. SSL支持 31.18. 在多线程程序里的行为 31.19. 制作libpq程序 31.20. 例子程序 章32. 大对象 32.1. 介绍 32.2. 实现特点 32.3. 客户端接口 32.4. 服务器端函数 32.5. 例子程序 章33. ECPG - Embedded SQL in C 33.1. The Concept 33.2. Connecting to the Database Server 33.3. Closing a Connection 33.4. Running SQL Commands 33.5. Choosing a Connection 33.6. Using Host Variables 33.7. Dynamic SQL 33.8. pgtypes library 33.9. Using Descriptor Areas 33.10. Informix compatibility mode 33.11. Error Handling 33.12. Preprocessor directives 33.13. Processing Embedded SQL Programs 33.14. Library Functions 33.15. Internals 章34. 信息模式 34.1. 关于这个模式 34.2. 数据类型 34.3. information_schema_catalog_name 34.4. administrable_role_authorizations 34.5. applicable_roles 34.6. attributes 34.7. check_constraint_routine_usage 34.8. check_constraints 34.9. column_domain_usage 34.10. column_privileges 34.11. column_udt_usage 34.12. 字段 34.13. constraint_column_usage 34.14. constraint_table_usage 34.15. data_type_privileges 34.16. domain_constraints 34.18. domains 34.17. domain_udt_usage 34.19. element_types 34.20. enabled_roles 34.21. foreign_data_wrapper_options 34.22. foreign_data_wrappers 34.23. foreign_server_options 34.24. foreign_servers 34.25. key_column_usage 34.26. parameters 34.27. referential_constraints 34.28. role_column_grants 34.29. role_routine_grants 34.30. role_table_grants 34.31. role_usage_grants 34.32. routine_privileges 34.33. routines 34.34. schemata 34.35. sequences 34.36. sql_features 34.37. sql_implementation_info 34.38. sql_languages 34.39. sql_packages 34.40. sql_parts 34.41. sql_sizing 34.42. sql_sizing_profiles 34.43. table_constraints 34.44. table_privileges 34.45. tables 34.46. triggered_update_columns 34.47. 触发器 34.48. usage_privileges 34.49. user_mapping_options 34.50. user_mappings 34.51. view_column_usage 34.52. view_routine_usage 34.53. view_table_usage 34.54. 视图 V. 服务器端编程 章35. 扩展SQL 35.1. 扩展性是如何实现的 35.2. PostgreSQL类型系统 35.3. User-Defined Functions 35.4. Query Language (SQL) Functions 35.5. Function Overloading 35.6. Function Volatility Categories 35.7. Procedural Language Functions 35.8. Internal Functions 35.9. C-Language Functions 35.10. User-Defined Aggregates 35.11. User-Defined Types 35.12. User-Defined Operators 35.13. Operator Optimization Information 35.14. Interfacing Extensions To Indexes 35.15. 用C++扩展 章36. 触发器 36.1. 触发器行为概述 36.3. 用 C 写触发器 36.2. 数据改变的可视性 36.4. 一个完整的例子 章37. 规则系统 37.1. The Query Tree 37.2. 视图和规则系统 37.3. 在INSERT,UPDATE和DELETE上的规则 37.4. 规则和权限 37.5. 规则和命令状态 37.6. 规则与触发器得比较 章38. Procedural Languages 38.1. Installing Procedural Languages 章39. PL/pgSQL - SQL过程语言 39.1. 概述 39.2. PL/pgSQL的结构 39.3. 声明 39.4. 表达式 39.5. 基本语句 39.6. 控制结构 39.7. 游标 39.8. 错误和消息 39.9. 触发器过程 39.10. PL/pgSQL Under the Hood 39.11. 开发PL/pgSQL的一些提示 39.12. 从OraclePL/SQL 进行移植 章40. PL/Tcl - Tcl Procedural Language 40.1. Overview 40.2. PL/Tcl Functions and Arguments 40.3. Data Values in PL/Tcl 40.4. Global Data in PL/Tcl 40.5. Database Access from PL/Tcl 40.6. Trigger Procedures in PL/Tcl 40.7. Modules and the unknown command 40.8. Tcl Procedure Names 章41. PL/Perl - Perl Procedural Language 41.1. PL/Perl Functions and Arguments 41.2. Data Values in PL/Perl 41.3. Built-in Functions 41.4. Global Values in PL/Perl 41.6. PL/Perl Triggers 41.5. Trusted and Untrusted PL/Perl 41.7. PL/Perl Under the Hood 章42. PL/Python - Python Procedural Language 42.1. Python 2 vs. Python 3 42.2. PL/Python Functions 42.3. Data Values 42.4. Sharing Data 42.5. Anonymous Code Blocks 42.6. Trigger Functions 42.7. Database Access 42.8. Utility Functions 42.9. Environment Variables 章43. Server Programming Interface 43.1. Interface Functions Spi-spi-connect Spi-spi-finish Spi-spi-push Spi-spi-pop Spi-spi-execute Spi-spi-exec Spi-spi-execute-with-args Spi-spi-prepare Spi-spi-prepare-cursor Spi-spi-prepare-params Spi-spi-getargcount Spi-spi-getargtypeid Spi-spi-is-cursor-plan Spi-spi-execute-plan Spi-spi-execute-plan-with-paramlist Spi-spi-execp Spi-spi-cursor-open Spi-spi-cursor-open-with-args Spi-spi-cursor-open-with-paramlist Spi-spi-cursor-find Spi-spi-cursor-fetch Spi-spi-cursor-move Spi-spi-scroll-cursor-fetch Spi-spi-scroll-cursor-move Spi-spi-cursor-close Spi-spi-saveplan 43.2. Interface Support Functions Spi-spi-fname Spi-spi-fnumber Spi-spi-getvalue Spi-spi-getbinval Spi-spi-gettype Spi-spi-gettypeid Spi-spi-getrelname Spi-spi-getnspname 43.3. Memory Management Spi-spi-palloc Spi-realloc Spi-spi-pfree Spi-spi-copytuple Spi-spi-returntuple Spi-spi-modifytuple Spi-spi-freetuple Spi-spi-freetupletable Spi-spi-freeplan 43.4. Visibility of Data Changes 43.5. Examples VI. 参考手册 I. SQL命令 Sql-abort Sql-alteraggregate Sql-alterconversion Sql-alterdatabase Sql-alterdefaultprivileges Sql-alterdomain Sql-alterforeigndatawrapper Sql-alterfunction Sql-altergroup Sql-alterindex Sql-alterlanguage Sql-alterlargeobject Sql-alteroperator Sql-alteropclass Sql-alteropfamily Sql-alterrole Sql-alterschema Sql-altersequence Sql-alterserver Sql-altertable Sql-altertablespace Sql-altertsconfig Sql-altertsdictionary Sql-altertsparser Sql-altertstemplate Sql-altertrigger Sql-altertype Sql-alteruser Sql-alterusermapping Sql-alterview Sql-analyze Sql-begin Sql-checkpoint Sql-close Sql-cluster Sql-comment Sql-commit Sql-commit-prepared Sql-copy Sql-createaggregate Sql-createcast Sql-createconstraint Sql-createconversion Sql-createdatabase Sql-createdomain Sql-createforeigndatawrapper Sql-createfunction Sql-creategroup Sql-createindex Sql-createlanguage Sql-createoperator Sql-createopclass Sql-createopfamily Sql-createrole Sql-createrule Sql-createschema Sql-createsequence Sql-createserver Sql-createtable Sql-createtableas Sql-createtablespace Sql-createtsconfig Sql-createtsdictionary Sql-createtsparser Sql-createtstemplate Sql-createtrigger Sql-createtype Sql-createuser Sql-createusermapping Sql-createview Sql-deallocate Sql-declare Sql-delete Sql-discard Sql-do Sql-dropaggregate Sql-dropcast Sql-dropconversion Sql-dropdatabase Sql-dropdomain Sql-dropforeigndatawrapper Sql-dropfunction Sql-dropgroup Sql-dropindex Sql-droplanguage Sql-dropoperator Sql-dropopclass Sql-dropopfamily Sql-drop-owned Sql-droprole Sql-droprule Sql-dropschema Sql-dropsequence Sql-dropserver Sql-droptable Sql-droptablespace Sql-droptsconfig Sql-droptsdictionary Sql-droptsparser Sql-droptstemplate Sql-droptrigger Sql-droptype Sql-dropuser Sql-dropusermapping Sql-dropview Sql-end Sql-execute Sql-explain Sql-fetch Sql-grant Sql-insert Sql-listen Sql-load Sql-lock Sql-move Sql-notify Sql-prepare Sql-prepare-transaction Sql-reassign-owned Sql-reindex Sql-release-savepoint Sql-reset Sql-revoke Sql-rollback Sql-rollback-prepared Sql-rollback-to Sql-savepoint Sql-select Sql-selectinto Sql-set Sql-set-constraints Sql-set-role Sql-set-session-authorization Sql-set-transaction Sql-show Sql-start-transaction Sql-truncate Sql-unlisten Sql-update Sql-vacuum Sql-values II. 客户端应用程序 App-clusterdb App-createdb App-createlang App-createuser App-dropdb App-droplang App-dropuser App-ecpg App-pgconfig App-pgdump App-pg-dumpall App-pgrestore App-psql App-reindexdb App-vacuumdb III. PostgreSQL服务器应用程序 App-initdb App-pgcontroldata App-pg-ctl App-pgresetxlog App-postgres App-postmaster VII. 内部 章44. PostgreSQL内部概览 44.1. 查询路径 44.2. 连接是如何建立起来的 44.3. 分析器阶段 44.4. ThePostgreSQL规则系统 44.5. 规划器/优化器 44.6. 执行器 章45. 系统表 45.1. 概述 45.2. pg_aggregate 45.3. pg_am 45.4. pg_amop 45.5. pg_amproc 45.6. pg_attrdef 45.7. pg_attribute 45.8. pg_authid 45.9. pg_auth_members 45.10. pg_cast 45.11. pg_class 45.12. pg_constraint 45.13. pg_conversion 45.14. pg_database 45.15. pg_db_role_setting 45.16. pg_default_acl 45.17. pg_depend 45.18. pg_description 45.19. pg_enum 45.20. pg_foreign_data_wrapper 45.21. pg_foreign_server 45.22. pg_index 45.23. pg_inherits 45.24. pg_language 45.25. pg_largeobject 45.26. pg_largeobject_metadata 45.27. pg_namespace 45.28. pg_opclass 45.29. pg_operator 45.30. pg_opfamily 45.31. pg_pltemplate 45.32. pg_proc 45.33. pg_rewrite 45.34. pg_shdepend 45.35. pg_shdescription 45.36. pg_statistic 45.37. pg_tablespace 45.38. pg_trigger 45.39. pg_ts_config 45.40. pg_ts_config_map 45.41. pg_ts_dict 45.42. pg_ts_parser 45.43. pg_ts_template 45.44. pg_type 45.45. pg_user_mapping 45.46. System Views 45.47. pg_cursors 45.48. pg_group 45.49. pg_indexes 45.50. pg_locks 45.51. pg_prepared_statements 45.52. pg_prepared_xacts 45.53. pg_roles 45.54. pg_rules 45.55. pg_settings 45.56. pg_shadow 45.57. pg_stats 45.58. pg_tables 45.59. pg_timezone_abbrevs 45.60. pg_timezone_names 45.61. pg_user 45.62. pg_user_mappings 45.63. pg_views 章46. Frontend/Backend Protocol 46.1. Overview 46.2. Message Flow 46.3. Streaming Replication Protocol 46.4. Message Data Types 46.5. Message Formats 46.6. Error and Notice Message Fields 46.7. Summary of Changes since Protocol 2.0 47. PostgreSQL Coding Conventions 47.1. Formatting 47.2. Reporting Errors Within the Server 47.3. Error Message Style Guide 章48. Native Language Support 48.1. For the Translator 48.2. For the Programmer 章49. Writing A Procedural Language Handler 章50. Genetic Query Optimizer 50.1. Query Handling as a Complex Optimization Problem 50.2. Genetic Algorithms 50.3. Genetic Query Optimization (GEQO) in PostgreSQL 50.4. Further Reading 章51. 索引访问方法接口定义 51.1. 索引的系统表记录 51.2. 索引访问方法函数 51.3. 索引扫描 51.4. 索引锁的考量 51.5. 索引唯一性检查 51.6. 索引开销估计函数 章52. GiST Indexes 52.1. Introduction 52.2. Extensibility 52.3. Implementation 52.4. Examples 52.5. Crash Recovery 章53. GIN Indexes 53.1. Introduction 53.2. Extensibility 53.3. Implementation 53.4. GIN tips and tricks 53.5. Limitations 53.6. Examples 章54. 数据库物理存储 54.1. 数据库文件布局 54.2. TOAST 54.3. 自由空间映射 54.4. 可见映射 54.5. 数据库分页文件 章55. BKI后端接口 55.1. BKI 文件格式 55.2. BKI命令 55.3. 系统初始化的BKI文件的结构 55.4. 例子 章56. 规划器如何使用统计信息 56.1. 行预期的例子 VIII. 附录 A. PostgreSQL错误代码 B. 日期/时间支持 B.1. 日期/时间输入解析 B.2. 日期/时间关键字 B.3. 日期/时间配置文件 B.4. 日期单位的历史 C. SQL关键字 D. SQL Conformance D.1. Supported Features D.2. Unsupported Features E. Release Notes Release-0-01 Release-0-02 Release-0-03 Release-1-0 Release-1-01 Release-1-02 Release-1-09 Release-6-0 Release-6-1 Release-6-1-1 Release-6-2 Release-6-2-1 Release-6-3 Release-6-3-1 Release-6-3-2 Release-6-4 Release-6-4-1 Release-6-4-2 Release-6-5 Release-6-5-1 Release-6-5-2 Release-6-5-3 Release-7-0 Release-7-0-1 Release-7-0-2 Release-7-0-3 Release-7-1 Release-7-1-1 Release-7-1-2 Release-7-1-3 Release-7-2 Release-7-2-1 Release-7-2-2 Release-7-2-3 Release-7-2-4 Release-7-2-5 Release-7-2-6 Release-7-2-7 Release-7-2-8 Release-7-3 Release-7-3-1 Release-7-3-10 Release-7-3-11 Release-7-3-12 Release-7-3-13 Release-7-3-14 Release-7-3-15 Release-7-3-16 Release-7-3-17 Release-7-3-18 Release-7-3-19 Release-7-3-2 Release-7-3-20 Release-7-3-21 Release-7-3-3 Release-7-3-4 Release-7-3-5 Release-7-3-6 Release-7-3-7 Release-7-3-8 Release-7-3-9 Release-7-4 Release-7-4-1 Release-7-4-10 Release-7-4-11 Release-7-4-12 Release-7-4-13 Release-7-4-14 Release-7-4-15 Release-7-4-16 Release-7-4-17 Release-7-4-18 Release-7-4-19 Release-7-4-2 Release-7-4-20 Release-7-4-21 Release-7-4-22 Release-7-4-23 Release-7-4-24 Release-7-4-25 Release-7-4-26 Release-7-4-27 Release-7-4-28 Release-7-4-29 Release-7-4-3 Release-7-4-30 Release-7-4-4 Release-7-4-5 Release-7-4-6 Release-7-4-7 Release-7-4-8 Release-7-4-9 Release-8-0 Release-8-0-1 Release-8-0-10 Release-8-0-11 Release-8-0-12 Release-8-0-13 Release-8-0-14 Release-8-0-15 Release-8-0-16 Release-8-0-17 Release-8-0-18 Release-8-0-19 Release-8-0-2 Release-8-0-20 Release-8-0-21 Release-8-0-22 Release-8-0-23 Release-8-0-24 Release-8-0-25 Release-8-0-26 Release-8-0-3 Release-8-0-4 Release-8-0-5 Release-8-0-6 Release-8-0-7 Release-8-0-8 Release-8-0-9 Release-8-1 Release-8-1-1 Release-8-1-10 Release-8-1-11 Release-8-1-12 Release-8-1-13 Release-8-1-14 Release-8-1-15 Release-8-1-16 Release-8-1-17 Release-8-1-18 Release-8-1-19 Release-8-1-2 Release-8-1-20 Release-8-1-21 Release-8-1-22 Release-8-1-23 Release-8-1-3 Release-8-1-4 Release-8-1-5 Release-8-1-6 Release-8-1-7 Release-8-1-8 Release-8-1-9 Release-8-2 Release-8-2-1 Release-8-2-10 Release-8-2-11 Release-8-2-12 Release-8-2-13 Release-8-2-14 Release-8-2-15 Release-8-2-16 Release-8-2-17 Release-8-2-18 Release-8-2-19 Release-8-2-2 Release-8-2-20 Release-8-2-21 Release-8-2-3 Release-8-2-4 Release-8-2-5 Release-8-2-6 Release-8-2-7 Release-8-2-8 Release-8-2-9 Release-8-3 Release-8-3-1 Release-8-3-10 Release-8-3-11 Release-8-3-12 Release-8-3-13 Release-8-3-14 Release-8-3-15 Release-8-3-2 Release-8-3-3 Release-8-3-4 Release-8-3-5 Release-8-3-6 Release-8-3-7 Release-8-3-8 Release-8-3-9 Release-8-4 Release-8-4-1 Release-8-4-2 Release-8-4-3 Release-8-4-4 Release-8-4-5 Release-8-4-6 Release-8-4-7 Release-8-4-8 Release-9-0 Release-9-0-1 Release-9-0-2 Release-9-0-3 Release-9-0-4 F. 额外提供的模块 F.1. adminpack F.2. auto_explain F.3. btree_gin F.4. btree_gist F.5. chkpass F.6. citext F.7. cube F.8. dblink Contrib-dblink-connect Contrib-dblink-connect-u Contrib-dblink-disconnect Contrib-dblink Contrib-dblink-exec Contrib-dblink-open Contrib-dblink-fetch Contrib-dblink-close Contrib-dblink-get-connections Contrib-dblink-error-message Contrib-dblink-send-query Contrib-dblink-is-busy Contrib-dblink-get-notify Contrib-dblink-get-result Contrib-dblink-cancel-query Contrib-dblink-get-pkey Contrib-dblink-build-sql-insert Contrib-dblink-build-sql-delete Contrib-dblink-build-sql-update F.9. dict_int F.10. dict_xsyn F.11. earthdistance F.12. fuzzystrmatch F.13. hstore F.14. intagg F.15. intarray F.16. isn F.17. lo F.18. ltree F.19. oid2name F.20. pageinspect F.21. passwordcheck F.22. pg_archivecleanup F.23. pgbench F.24. pg_buffercache F.25. pgcrypto F.26. pg_freespacemap F.27. pgrowlocks F.28. pg_standby F.29. pg_stat_statements F.30. pgstattuple F.31. pg_trgm F.32. pg_upgrade F.33. seg F.34. spi F.35. sslinfo F.36. tablefunc F.37. test_parser F.38. tsearch2 F.39. unaccent F.40. uuid-ossp F.41. vacuumlo F.42. xml2 G. 外部项目 G.1. 客户端接口 G.2. 过程语言 G.3. 扩展 H. The Source Code Repository H.1. Getting The Source Via Git I. 文档 I.1. DocBook I.2. 工具集 I.3. 制作文档 I.4. 文档写作 I.5. 风格指导 J. 首字母缩略词 参考书目 Bookindex Index
文字

35.14. Interfacing Extensions To Indexes

The procedures described thus far let you define new types, new functions, and new operators. However, we cannot yet define an index on a column of a new data type. To do this, we must define an operator class for the new data type. Later in this section, we will illustrate this concept in an example: a new operator class for the B-tree index method that stores and sorts complex numbers in ascending absolute value order.

Operator classes can be grouped into operator families to show the relationships between semantically compatible classes. When only a single data type is involved, an operator class is sufficient, so we'll focus on that case first and then return to operator families.

35.14.1. Index Methods and Operator Classes

The pg_am table contains one row for every index method (internally known as access method). Support for regular access to tables is built into PostgreSQL, but all index methods are described in pg_am. It is possible to add a new index method by defining the required interface routines and then creating a row in pg_am — but that is beyond the scope of this chapter (see Chapter 51).

The routines for an index method do not directly know anything about the data types that the index method will operate on. Instead, an operator class identifies the set of operations that the index method needs to use to work with a particular data type. Operator classes are so called because one thing they specify is the set of WHERE-clause operators that can be used with an index (i.e., can be converted into an index-scan qualification). An operator class can also specify some support procedures that are needed by the internal operations of the index method, but do not directly correspond to any WHERE-clause operator that can be used with the index.

It is possible to define multiple operator classes for the same data type and index method. By doing this, multiple sets of indexing semantics can be defined for a single data type. For example, a B-tree index requires a sort ordering to be defined for each data type it works on. It might be useful for a complex-number data type to have one B-tree operator class that sorts the data by complex absolute value, another that sorts by real part, and so on. Typically, one of the operator classes will be deemed most commonly useful and will be marked as the default operator class for that data type and index method.

The same operator class name can be used for several different index methods (for example, both B-tree and hash index methods have operator classes named int4_ops), but each such class is an independent entity and must be defined separately.

35.14.2. Index Method Strategies

The operators associated with an operator class are identified by "strategy numbers", which serve to identify the semantics of each operator within the context of its operator class. For example, B-trees impose a strict ordering on keys, lesser to greater, and so operators like "less than" and "greater than or equal to" are interesting with respect to a B-tree. Because PostgreSQL allows the user to define operators, PostgreSQL cannot look at the name of an operator (e.g., < or >=) and tell what kind of comparison it is. Instead, the index method defines a set of "strategies", which can be thought of as generalized operators. Each operator class specifies which actual operator corresponds to each strategy for a particular data type and interpretation of the index semantics.

The B-tree index method defines five strategies, shown in Table 35-2.

Table 35-2. B-tree Strategies

Operation Strategy Number
less than 1
less than or equal 2
equal 3
greater than or equal 4
greater than 5

Hash indexes support only equality comparisons, and so they use only one strategy, shown in Table 35-3.

Table 35-3. Hash Strategies

Operation Strategy Number
equal 1

GiST indexes are more flexible: they do not have a fixed set of strategies at all. Instead, the "consistency" support routine of each particular GiST operator class interprets the strategy numbers however it likes. As an example, several of the built-in GiST index operator classes index two-dimensional geometric objects, providing the "R-tree" strategies shown in Table 35-4. Four of these are true two-dimensional tests (overlaps, same, contains, contained by); four of them consider only the X direction; and the other four provide the same tests in the Y direction.

Table 35-4. GiST Two-Dimensional "R-tree" Strategies

Operation Strategy Number
strictly left of 1
does not extend to right of 2
overlaps 3
does not extend to left of 4
strictly right of 5
same 6
contains 7
contained by 8
does not extend above 9
strictly below 10
strictly above 11
does not extend below 12

GIN indexes are similar to GiST indexes in flexibility: they don't have a fixed set of strategies. Instead the support routines of each operator class interpret the strategy numbers according to the operator class's definition. As an example, the strategy numbers used by the built-in operator classes for arrays are shown in Table 35-5.

Table 35-5. GIN Array Strategies

Operation Strategy Number
overlap 1
contains 2
is contained by 3
equal 4

Notice that all strategy operators return Boolean values. In practice, all operators defined as index method strategies must return type boolean, since they must appear at the top level of a WHERE clause to be used with an index.

35.14.3. Index Method Support Routines

Strategies aren't usually enough information for the system to figure out how to use an index. In practice, the index methods require additional support routines in order to work. For example, the B-tree index method must be able to compare two keys and determine whether one is greater than, equal to, or less than the other. Similarly, the hash index method must be able to compute hash codes for key values. These operations do not correspond to operators used in qualifications in SQL commands; they are administrative routines used by the index methods, internally.

Just as with strategies, the operator class identifies which specific functions should play each of these roles for a given data type and semantic interpretation. The index method defines the set of functions it needs, and the operator class identifies the correct functions to use by assigning them to the "support function numbers" specified by the index method.

B-trees require a single support function, shown in Table 35-6.

Table 35-6. B-tree Support Functions

Function Support Number
Compare two keys and return an integer less than zero, zero, or greater than zero, indicating whether the first key is less than, equal to, or greater than the second 1

Hash indexes likewise require one support function, shown in Table 35-7.

Table 35-7. Hash Support Functions

Function Support Number
Compute the hash value for a key 1

GiST indexes require seven support functions, shown in Table 35-8.

Table 35-8. GiST Support Functions

Function Support Number
consistent - determine whether key satisfies the query qualifier 1
union - compute union of a set of keys 2
compress - compute a compressed representation of a key or value to be indexed 3
decompress - compute a decompressed representation of a compressed key 4
penalty - compute penalty for inserting new key into subtree with given subtree's key 5
picksplit - determine which entries of a page are to be moved to the new page and compute the union keys for resulting pages 6
equal - compare two keys and return true if they are equal 7

GIN indexes require four support functions, shown in Table 35-9.

Table 35-9. GIN Support Functions

Function Description Support Number
compare compare two keys and return an integer less than zero, zero, or greater than zero, indicating whether the first key is less than, equal to, or greater than the second 1
extractValue extract keys from a value to be indexed 2
extractQuery extract keys from a query condition 3
consistent determine whether value matches query condition 4
comparePartial (optional method) compare partial key from query and key from index, and return an integer less than zero, zero, or greater than zero, indicating whether GIN should ignore this index entry, treat the entry as a match, or stop the index scan 5

Unlike strategy operators, support functions return whichever data type the particular index method expects; for example in the case of the comparison function for B-trees, a signed integer. The number and types of the arguments to each support function are likewise dependent on the index method. For B-tree and hash the support functions take the same input data types as do the operators included in the operator class, but this is not the case for most GIN and GiST support functions.

35.14.4. An Example

Now that we have seen the ideas, here is the promised example of creating a new operator class. (You can find a working copy of this example in src/tutorial/complex.c and src/tutorial/complex.sql in the source distribution.) The operator class encapsulates operators that sort complex numbers in absolute value order, so we choose the name complex_abs_ops. First, we need a set of operators. The procedure for defining operators was discussed in Section 35.12. For an operator class on B-trees, the operators we require are:

  • absolute-value less-than (strategy 1)
  • absolute-value less-than-or-equal (strategy 2)
  • absolute-value equal (strategy 3)
  • absolute-value greater-than-or-equal (strategy 4)
  • absolute-value greater-than (strategy 5)

The least error-prone way to define a related set of comparison operators is to write the B-tree comparison support function first, and then write the other functions as one-line wrappers around the support function. This reduces the odds of getting inconsistent results for corner cases. Following this approach, we first write:

#define Mag(c)  ((c)->x*(c)->x + (c)->y*(c)->y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{
    double      amag = Mag(a),
                bmag = Mag(b);

    if (amag < bmag)
        return -1;
    if (amag > bmag)
        return 1;
    return 0;
}

Now the less-than function looks like:

PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{
    Complex    *a = (Complex *) PG_GETARG_POINTER(0);
    Complex    *b = (Complex *) PG_GETARG_POINTER(1);

    PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}

The other four functions differ only in how they compare the internal function's result to zero.

Next we declare the functions and the operators based on the functions to SQL:

CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
    AS 'filename', 'complex_abs_lt'
    LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR < (
   leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
   commutator = > , negator = >= ,
   restrict = scalarltsel, join = scalarltjoinsel
);

It is important to specify the correct commutator and negator operators, as well as suitable restriction and join selectivity functions, otherwise the optimizer will be unable to make effective use of the index. Note that the less-than, equal, and greater-than cases should use different selectivity functions.

Other things worth noting are happening here:

  • There can only be one operator named, say, = and taking type complex for both operands. In this case we don't have any other operator = for complex, but if we were building a practical data type we'd probably want = to be the ordinary equality operation for complex numbers (and not the equality of the absolute values). In that case, we'd need to use some other operator name for complex_abs_eq.

  • Although PostgreSQL can cope with functions having the same SQL name as long as they have different argument data types, C can only cope with one global function having a given name. So we shouldn't name the C function something simple like abs_eq. Usually it's a good practice to include the data type name in the C function name, so as not to conflict with functions for other data types.

  • We could have made the SQL name of the function abs_eq, relying on PostgreSQL to distinguish it by argument data types from any other SQL function of the same name. To keep the example simple, we make the function have the same names at the C level and SQL level.

The next step is the registration of the support routine required by B-trees. The example C code that implements this is in the same file that contains the operator functions. This is how we declare the function:

CREATE FUNCTION complex_abs_cmp(complex, complex)
    RETURNS integer
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT;

Now that we have the required operators and support routine, we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
    DEFAULT FOR TYPE complex USING btree AS
        OPERATOR        1       < ,
        OPERATOR        2       <= ,
        OPERATOR        3       = ,
        OPERATOR        4       >= ,
        OPERATOR        5       > ,
        FUNCTION        1       complex_abs_cmp(complex, complex);

And we're done! It should now be possible to create and use B-tree indexes on complex columns.

We could have written the operator entries more verbosely, as in:

        OPERATOR        1       < (complex, complex) ,

but there is no need to do so when the operators take the same data type we are defining the operator class for.

The above example assumes that you want to make this new operator class the default B-tree operator class for the complex data type. If you don't, just leave out the word DEFAULT.

35.14.5. Operator Classes and Operator Families

So far we have implicitly assumed that an operator class deals with only one data type. While there certainly can be only one data type in a particular index column, it is often useful to index operations that compare an indexed column to a value of a different data type. Also, if there is use for a cross-data-type operator in connection with an operator class, it is often the case that the other data type has a related operator class of its own. It is helpful to make the connections between related classes explicit, because this can aid the planner in optimizing SQL queries (particularly for B-tree operator classes, since the planner contains a great deal of knowledge about how to work with them).

To handle these needs, PostgreSQL uses the concept of an operator family. An operator family contains one or more operator classes, and can also contain indexable operators and corresponding support functions that belong to the family as a whole but not to any single class within the family. We say that such operators and functions are "loose" within the family, as opposed to being bound into a specific class. Typically each operator class contains single-data-type operators while cross-data-type operators are loose in the family.

All the operators and functions in an operator family must have compatible semantics, where the compatibility requirements are set by the index method. You might therefore wonder why bother to single out particular subsets of the family as operator classes; and indeed for many purposes the class divisions are irrelevant and the family is the only interesting grouping. The reason for defining operator classes is that they specify how much of the family is needed to support any particular index. If there is an index using an operator class, then that operator class cannot be dropped without dropping the index — but other parts of the operator family, namely other operator classes and loose operators, could be dropped. Thus, an operator class should be specified to contain the minimum set of operators and functions that are reasonably needed to work with an index on a specific data type, and then related but non-essential operators can be added as loose members of the operator family.

As an example, PostgreSQL has a built-in B-tree operator family integer_ops, which includes operator classes int8_ops, int4_ops, and int2_ops for indexes on bigint (int8), integer (int4), and smallint (int2) columns respectively. The family also contains cross-data-type comparison operators allowing any two of these types to be compared, so that an index on one of these types can be searched using a comparison value of another type. The family could be duplicated by these definitions:

CREATE OPERATOR FAMILY integer_ops USING btree;

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree FAMILY integer_ops AS
  -- standard int8 comparisons
  OPERATOR 1 < ,
  OPERATOR 2 <= ,
  OPERATOR 3 = ,
  OPERATOR 4 >= ,
  OPERATOR 5 > ,
  FUNCTION 1 btint8cmp(int8, int8) ;

CREATE OPERATOR CLASS int4_ops
DEFAULT FOR TYPE int4 USING btree FAMILY integer_ops AS
  -- standard int4 comparisons
  OPERATOR 1 < ,
  OPERATOR 2 <= ,
  OPERATOR 3 = ,
  OPERATOR 4 >= ,
  OPERATOR 5 > ,
  FUNCTION 1 btint4cmp(int4, int4) ;

CREATE OPERATOR CLASS int2_ops
DEFAULT FOR TYPE int2 USING btree FAMILY integer_ops AS
  -- standard int2 comparisons
  OPERATOR 1 < ,
  OPERATOR 2 <= ,
  OPERATOR 3 = ,
  OPERATOR 4 >= ,
  OPERATOR 5 > ,
  FUNCTION 1 btint2cmp(int2, int2) ;

ALTER OPERATOR FAMILY integer_ops USING btree ADD
  -- cross-type comparisons int8 vs int2
  OPERATOR 1 < (int8, int2) ,
  OPERATOR 2 <= (int8, int2) ,
  OPERATOR 3 = (int8, int2) ,
  OPERATOR 4 >= (int8, int2) ,
  OPERATOR 5 > (int8, int2) ,
  FUNCTION 1 btint82cmp(int8, int2) ,

  -- cross-type comparisons int8 vs int4
  OPERATOR 1 < (int8, int4) ,
  OPERATOR 2 <= (int8, int4) ,
  OPERATOR 3 = (int8, int4) ,
  OPERATOR 4 >= (int8, int4) ,
  OPERATOR 5 > (int8, int4) ,
  FUNCTION 1 btint84cmp(int8, int4) ,

  -- cross-type comparisons int4 vs int2
  OPERATOR 1 < (int4, int2) ,
  OPERATOR 2 <= (int4, int2) ,
  OPERATOR 3 = (int4, int2) ,
  OPERATOR 4 >= (int4, int2) ,
  OPERATOR 5 > (int4, int2) ,
  FUNCTION 1 btint42cmp(int4, int2) ,

  -- cross-type comparisons int4 vs int8
  OPERATOR 1 < (int4, int8) ,
  OPERATOR 2 <= (int4, int8) ,
  OPERATOR 3 = (int4, int8) ,
  OPERATOR 4 >= (int4, int8) ,
  OPERATOR 5 > (int4, int8) ,
  FUNCTION 1 btint48cmp(int4, int8) ,

  -- cross-type comparisons int2 vs int8
  OPERATOR 1 < (int2, int8) ,
  OPERATOR 2 <= (int2, int8) ,
  OPERATOR 3 = (int2, int8) ,
  OPERATOR 4 >= (int2, int8) ,
  OPERATOR 5 > (int2, int8) ,
  FUNCTION 1 btint28cmp(int2, int8) ,

  -- cross-type comparisons int2 vs int4
  OPERATOR 1 < (int2, int4) ,
  OPERATOR 2 <= (int2, int4) ,
  OPERATOR 3 = (int2, int4) ,
  OPERATOR 4 >= (int2, int4) ,
  OPERATOR 5 > (int2, int4) ,
  FUNCTION 1 btint24cmp(int2, int4) ;

Notice that this definition "overloads" the operator strategy and support function numbers: each number occurs multiple times within the family. This is allowed so long as each instance of a particular number has distinct input data types. The instances that have both input types equal to an operator class's input type are the primary operators and support functions for that operator class, and in most cases should be declared as part of the operator class rather than as loose members of the family.

In a B-tree operator family, all the operators in the family must sort compatibly, meaning that the transitive laws hold across all the data types supported by the family: "if A = B and B = C, then A = C", and "if A < B and B < C, then A < C". For each operator in the family there must be a support function having the same two input data types as the operator. It is recommended that a family be complete, i.e., for each combination of data types, all operators are included. Each operator class should include just the non-cross-type operators and support function for its data type.

To build a multiple-data-type hash operator family, compatible hash support functions must be created for each data type supported by the family. Here compatibility means that the functions are guaranteed to return the same hash code for any two values that are considered equal by the family's equality operators, even when the values are of different types. This is usually difficult to accomplish when the types have different physical representations, but it can be done in some cases. Notice that there is only one support function per data type, not one per equality operator. It is recommended that a family be complete, i.e., provide an equality operator for each combination of data types. Each operator class should include just the non-cross-type equality operator and the support function for its data type.

GIN and GiST indexes do not have any explicit notion of cross-data-type operations. The set of operators supported is just whatever the primary support functions for a given operator class can handle.

Note: Prior to PostgreSQL 8.3, there was no concept of operator families, and so any cross-data-type operators intended to be used with an index had to be bound directly into the index's operator class. While this approach still works, it is deprecated because it makes an index's dependencies too broad, and because the planner can handle cross-data-type comparisons more effectively when both data types have operators in the same operator family.

35.14.6. System Dependencies on Operator Classes

PostgreSQL uses operator classes to infer the properties of operators in more ways than just whether they can be used with indexes. Therefore, you might want to create operator classes even if you have no intention of indexing any columns of your data type.

In particular, there are SQL features such as ORDER BY and DISTINCT that require comparison and sorting of values. To implement these features on a user-defined data type, PostgreSQL looks for the default B-tree operator class for the data type. The "equals" member of this operator class defines the system's notion of equality of values for GROUP BY and DISTINCT, and the sort ordering imposed by the operator class defines the default ORDER BY ordering.

Comparison of arrays of user-defined types also relies on the semantics defined by the default B-tree operator class.

If there is no default B-tree operator class for a data type, the system will look for a default hash operator class. But since that kind of operator class only provides equality, in practice it is only enough to support array equality.

When there is no default operator class for a data type, you will get errors like "could not identify an ordering operator" if you try to use these SQL features with the data type.

Note: In PostgreSQL versions before 7.4, sorting and grouping operations would implicitly use operators named =, <, and >. The new behavior of relying on default operator classes avoids having to make any assumption about the behavior of operators with particular names.

Another important point is that an operator that appears in a hash operator family is a candidate for hash joins, hash aggregation, and related optimizations. The hash operator family is essential here since it identifies the hash function(s) to use.

35.14.7. Special Features of Operator Classes

There are two special features of operator classes that we have not discussed yet, mainly because they are not useful with the most commonly used index methods.

Normally, declaring an operator as a member of an operator class (or family) means that the index method can retrieve exactly the set of rows that satisfy a WHERE condition using the operator. For example:

SELECT * FROM table WHERE integer_column < 4;

can be satisfied exactly by a B-tree index on the integer column. But there are cases where an index is useful as an inexact guide to the matching rows. For example, if a GiST index stores only bounding boxes for geometric objects, then it cannot exactly satisfy a WHERE condition that tests overlap between nonrectangular objects such as polygons. Yet we could use the index to find objects whose bounding box overlaps the bounding box of the target object, and then do the exact overlap test only on the objects found by the index. If this scenario applies, the index is said to be "lossy" for the operator. Lossy index searches are implemented by having the index method return a recheck flag when a row might or might not really satisfy the query condition. The core system will then test the original query condition on the retrieved row to see whether it should be returned as a valid match. This approach works if the index is guaranteed to return all the required rows, plus perhaps some additional rows, which can be eliminated by performing the original operator invocation. The index methods that support lossy searches (currently, GiST and GIN) allow the support functions of individual operator classes to set the recheck flag, and so this is essentially an operator-class feature.

Consider again the situation where we are storing in the index only the bounding box of a complex object such as a polygon. In this case there's not much value in storing the whole polygon in the index entry — we might as well store just a simpler object of type box. This situation is expressed by the STORAGE option in CREATE OPERATOR CLASS: we'd write something like:

CREATE OPERATOR CLASS polygon_ops
    DEFAULT FOR TYPE polygon USING gist AS
        ...
        STORAGE box;

At present, only the GiST and GIN index methods support a STORAGE type that's different from the column data type. The GiST compress and decompress support routines must deal with data-type conversion when STORAGE is used. In GIN, the STORAGE type identifies the type of the "key" values, which normally is different from the type of the indexed column — for example, an operator class for integer-array columns might have keys that are just integers. The GIN extractValue and extractQuery support routines are responsible for extracting keys from indexed values.

上一篇: 下一篇: