Heim Backend-Entwicklung Python-Tutorial Beispielanalyse mehrerer geplanter Aufgaben, die in einem einzelnen Thread in der Python-Entwicklung ausgeführt werden

Beispielanalyse mehrerer geplanter Aufgaben, die in einem einzelnen Thread in der Python-Entwicklung ausgeführt werden

Jul 27, 2017 pm 04:03 PM
python 任务 定时

Single-Threaded Multi-Timed Tasks

1. Erste Version:

Idee: timer Um es ganz klar auszudrücken bedeutet dies, dass die Ausführung des angegebenen Programms verzögert wird. Derzeit ist es nicht praktikabel, den Timer in Python selbst zu rekonstruieren, und die Fähigkeit ist nicht erreicht, sodass der System-Timer für den Verzögerungsvorgang verwendet werden muss. Wir können jedoch die Regeln ändern. Alle Programme, die geplante Vorgänge ausführen müssen, werden zu einer bestimmten Liste hinzugefügt. Nehmen Sie das Programm mit der kürzesten geplanten Zeit aus der Liste heraus, binden Sie Threading.Timer (Zeit, Rückruf) und warten Sie auf die Zeit Timeout, lösen Sie einen benutzerdefinierten Rückruf aus und führen Sie das gerade aus der Liste entfernte Programm aus. Aktualisieren Sie dann die Zeit, nehmen Sie das Programm mit der kürzesten Zeit erneut aus der Liste heraus, binden Sie weiterhin threading.Timer und setzen Sie die iterative Schleife fort, wenn Eine neue geplante Aufgabe wird zur Liste hinzugefügt, die aktuelle Threading.Timer-Bindung abbrechen, die Zeit in der Liste aktualisieren, die kürzeste Zeit erneut herausnehmen und Threading.Timer...

Code:


import threading
import time

class Timer():
    '''单线程下的定时器'''

    def __init__(self):
        self.queues = []
        self.timer = None
        self.last_time = time.time()

    def start(self):
        item = self.get()
        if item:
            self.timer = threading.Timer(item[0],self.execute)
            self.timer.start()

    def add(self,item):
        print('add',item)
        self.flush_time()
        self.queues.append(item)
        self.queues.sort(key=lambda x:x[0])

        if self.timer:
            self.timer.cancel()
            self.timer = None
        self.start()

    def get(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues[0]
        return item

    def pop(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues.pop(0)
        return item

    def flush_time(self):
        curr_time = time.time()
        for i in self.queues:
            i[0] = i[0] - (curr_time - self.last_time)
        self.last_time = curr_time

    def execute(self):
        # if self.timer:
        #     self.timer.cancel()
        #     self.timer = None
        item = self.pop()
        self.flush_time()
        if item:
            callback = item[1]
            args = item[0]
            callback(args)
        self.start()
Nach dem Login kopieren

Ausführung und Ausgabe:


if __name__ == '__main__':    # 检测线程数
    def func():        while True:            print(threading.active_count())
            time.sleep(1)
    
    f1 = threading.Thread(target=func)
    f1.start()    
    import logging
    logging.basicConfig(level=logging.INFO,format="%(asctime)s %(message)s", datefmt="%m/%d/%Y %H:%M:%S [%A]")    def func1(*args):
        logging.info('func1 %s'%args)        # time.sleep(5)
    
    def func2(*args):
        logging.info('func2 %s' % args)        # time.sleep(5)
    def func3(*args):
        logging.info('func3 %s' % args)        # time.sleep(5)
    
    def func4(*args):
        logging.info('func4 %s' % args)        # time.sleep(5)
    
    def func5(*args):
        logging.info('func5 %s' % args)        # time.sleep(5)
    
    
    # 测试
    t1 = Timer()
    logging.info('start')
    t1.add([5,func1])
    time.sleep(0.5)
    t1.add([4,func2])
    time.sleep(0.5)
    t1.add([3,func3])
    time.sleep(0.5)
    t1.add([2,func4])
    time.sleep(0.5)
    t1.add([1,func5])
    time.sleep(5)
    t1.add([1,func1])
    t1.add([2,func2])
    t1.add([3,func3])
    t1.add([4,func4])
    t1.add([5,func5])    
    # 输出
    # 2
    # 07/27/2017 10:36:47 [Thursday] start
    # add [5, <function func1 at 0x000000D79FC77E18>]
    # add [4, <function func2 at 0x000000D79FCA8488>]
    # 3
    # add [3, <function func3 at 0x000000D79FCA8510>]
    # add [2, <function func4 at 0x000000D79FCA8598>]
    # 3
    # add [1, <function func5 at 0x000000D79FCA8620>]
    # 3
    # 07/27/2017 10:36:50 [Thursday] func5 1
    # 07/27/2017 10:36:51 [Thursday] func4 0.498349666595459
    # 3
    # 07/27/2017 10:36:51 [Thursday] func3 0.49782633781433105
    # 07/27/2017 10:36:52 [Thursday] func2 0.49848270416259766
    # 3
    # 07/27/2017 10:36:52 [Thursday] func1 0.48449039459228516
    # 2
    # 2
    # add [1, <function func1 at 0x000000D79FC77E18>]
    # add [2, <function func2 at 0x000000D79FCA8488>]
    # add [3, <function func3 at 0x000000D79FCA8510>]
    # add [4, <function func4 at 0x000000D79FCA8598>]
    # add [5, <function func5 at 0x000000D79FCA8620>]
    # 3
    # 07/27/2017 10:36:55 [Thursday] func1 0.9990766048431396
    # 3
    # 07/27/2017 10:36:56 [Thursday] func2 0.9988017082214355
    # 3
    # 07/27/2017 10:36:57 [Thursday] func3 0.99928879737854
    # 07/27/2017 10:36:58 [Thursday] func4 0.9991350173950195
    # 3
    # 3
    # 07/27/2017 10:36:59 [Thursday] func5 0.9988160133361816
Nach dem Login kopieren

Führen Sie den Code aus

Hinweis: Wenn Sie sich die Codeausgabe ansehen, werden alle Timer der Reihe nach entsprechend ausgeführt Kalibrierte Zeit, die perfekt ist. Alles sieht schön aus, aber es sieht einfach so aus, hahaha. Wenn Sie time.sleep(5) in func aktivieren, erhöht sich die Anzahl der Threads langsam, der Grund dafür ist, dass der letzte Timer-Rückruf noch ausgeführt wird. und der nächste Timer wurde bereits gestartet, und dann wird ein neuer Timer hinzugefügt, leider fehlgeschlagen

2. Überarbeitete Version

Idee: Verwenden Sie den Generator. Das Verbrauchermodell verwendet Threading.Condition-Bedingungsvariablen. Es ist erzwungen, immer einen Timer zu aktivieren!

Code:


import time
import threading
import logging

class NewTimer(threading.Thread):
    &#39;&#39;&#39;单线程下的定时器&#39;&#39;&#39;
    def __init__(self):
        super().__init__()
        self.queues = []
        self.timer = None
        self.cond = threading.Condition()

    def run(self):
        while True:
            # print(&#39;NewTimer&#39;,self.queues)
            self.cond.acquire()
            item = self.get()
            callback = None
            if not item:
                logging.info(&#39;NewTimer wait&#39;)
                self.cond.wait()
            elif item[0] <= time.time():
                new_item = self.pop()
                callback = new_item[1]
            else:
                logging.info(&#39;NewTimer start sys timer and wait&#39;)
                self.timer = threading.Timer(item[0]-time.time(),self.execute)
                self.timer.start()
                self.cond.wait()
            self.cond.release()

            if callback:
                callback(item[0])

    def add(self, item):
        # print(&#39;add&#39;, item)
        self.cond.acquire()
        item[0] = item[0] + time.time()
        self.queues.append(item)
        self.queues.sort(key=lambda x: x[0])
        logging.info(&#39;NewTimer add notify&#39;)
        if self.timer:
            self.timer.cancel()
            self.timer = None
        self.cond.notify()
        self.cond.release()

    def pop(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues.pop(0)
        return item

    def get(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues[0]
        return item

    def execute(self):
        logging.info(&#39;NewTimer execute notify&#39;)
        self.cond.acquire()
        self.cond.notify()
        self.cond.release()
Nach dem Login kopieren

Ausführung und Ausgabe:


if __name__ == &#39;__main__&#39;:    def func():        while True:            print(threading.active_count())
            time.sleep(1)

    f1 = threading.Thread(target=func)
    f1.start()
    logging.basicConfig(level=logging.INFO,format="%(asctime)s %(message)s", datefmt="%m/%d/%Y %H:%M:%S [%A]")

    newtimer = NewTimer()
    newtimer.start()    def func1(*args):
        logging.info(&#39;func1 %s&#39;%args)
        time.sleep(5)    def func2(*args):
        logging.info(&#39;func2 %s&#39; % args)
        time.sleep(5)    def func3(*args):
        logging.info(&#39;func3 %s&#39; % args)
        time.sleep(5)    def func4(*args):
        logging.info(&#39;func4 %s&#39; % args)
        time.sleep(5)    def func5(*args):
        logging.info(&#39;func5 %s&#39; % args)
        time.sleep(5)

    newtimer.add([5,func1])
    newtimer.add([4,func2])
    newtimer.add([3,func3])
    newtimer.add([2,func4])
    newtimer.add([1,func5])
    time.sleep(1)
    newtimer.add([1,func1])
    newtimer.add([2,func2])
    newtimer.add([3,func3])
    newtimer.add([4,func4])
    newtimer.add([5,func5])# 输出# 2# 07/27/2017 11:26:19 [Thursday] NewTimer wait# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer start sys timer and wait# 07/27/2017 11:26:20 [Thursday] NewTimer execute notify# 4# 07/27/2017 11:26:20 [Thursday] func5 1501125980.2175007# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 3# 3# 3# 3# 3# 07/27/2017 11:26:25 [Thursday] func4 1501125981.2175007# 3# 3# 3# 3# 07/27/2017 11:26:30 [Thursday] func1 1501125981.218279# 3# 3# 3# 3# 3# 3# 07/27/2017 11:26:35 [Thursday] func3 1501125982.2175007# 3# 3# 3# 3# 07/27/2017 11:26:40 [Thursday] func2 1501125982.218279# 3# 3# 3# 3# 3# 07/27/2017 11:26:45 [Thursday] func2 1501125983.2175007# 3# 3# 3# 3# 3# 07/27/2017 11:26:50 [Thursday] func3 1501125983.218279# 3# 3# 3# 3# 3# 07/27/2017 11:26:55 [Thursday] func1 1501125984.2175007# 3# 3# 3# 3# 3# 07/27/2017 11:27:00 [Thursday] func4 1501125984.218279# 3# 3# 3# 3# 3# 07/27/2017 11:27:05 [Thursday] func5 1501125985.218279# 3# 3# 3# 3# 3# 07/27/2017 11:27:10 [Thursday] NewTimer wait
Nach dem Login kopieren

Ausgabe

Hinweis: Unabhängig von der Anzahl der Testthreads, die dieses Mal getestet werden, wird die Anzahl der Threads nicht kontinuierlich erhöht , und Multi-Timer-Aufgabenanforderungen können gleichzeitig erfüllt werden; Nachteile: Es werden zwei Threads verwendet, und es wird kein einzelner Thread verwendet. Bei der Implementierung muss das zweite Zeitgenauigkeitsproblem abgewartet werden, bis das letzte Timer-Programm ausgeführt wird das Programm kann weiterlaufen

Das obige ist der detaillierte Inhalt vonBeispielanalyse mehrerer geplanter Aufgaben, die in einem einzelnen Thread in der Python-Entwicklung ausgeführt werden. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Was ist die Funktion der C -Sprachsumme? Was ist die Funktion der C -Sprachsumme? Apr 03, 2025 pm 02:21 PM

Es gibt keine integrierte Summenfunktion in der C-Sprache, daher muss sie selbst geschrieben werden. Die Summe kann erreicht werden, indem das Array durchquert und Elemente akkumulieren: Schleifenversion: Die Summe wird für die Schleifen- und Arraylänge berechnet. Zeigerversion: Verwenden Sie Zeiger, um auf Array-Elemente zu verweisen, und eine effiziente Summierung wird durch Selbststillstandszeiger erzielt. Dynamisch Array -Array -Version zuweisen: Zuordnen Sie Arrays dynamisch und verwalten Sie selbst den Speicher selbst, um sicherzustellen, dass der zugewiesene Speicher befreit wird, um Speicherlecks zu verhindern.

Wer bekommt mehr Python oder JavaScript bezahlt? Wer bekommt mehr Python oder JavaScript bezahlt? Apr 04, 2025 am 12:09 AM

Es gibt kein absolutes Gehalt für Python- und JavaScript -Entwickler, je nach Fähigkeiten und Branchenbedürfnissen. 1. Python kann mehr in Datenwissenschaft und maschinellem Lernen bezahlt werden. 2. JavaScript hat eine große Nachfrage in der Entwicklung von Front-End- und Full-Stack-Entwicklung, und sein Gehalt ist auch beträchtlich. 3. Einflussfaktoren umfassen Erfahrung, geografische Standort, Unternehmensgröße und spezifische Fähigkeiten.

Ist DifferiDItistinginginging verwandt? Ist DifferiDItistinginginging verwandt? Apr 03, 2025 pm 10:30 PM

Obwohl eindeutig und unterschiedlich mit der Unterscheidung zusammenhängen, werden sie unterschiedlich verwendet: Unterschieds (Adjektiv) beschreibt die Einzigartigkeit der Dinge selbst und wird verwendet, um Unterschiede zwischen den Dingen zu betonen; Das Unterscheidungsverhalten oder die Fähigkeit des Unterschieds ist eindeutig (Verb) und wird verwendet, um den Diskriminierungsprozess zu beschreiben. In der Programmierung wird häufig unterschiedlich, um die Einzigartigkeit von Elementen in einer Sammlung darzustellen, wie z. B. Deduplizierungsoperationen; Unterscheidet spiegelt sich in der Gestaltung von Algorithmen oder Funktionen wider, wie z. B. die Unterscheidung von ungeraden und sogar Zahlen. Bei der Optimierung sollte der eindeutige Betrieb den entsprechenden Algorithmus und die Datenstruktur auswählen, während der unterschiedliche Betrieb die Unterscheidung zwischen logischer Effizienz optimieren und auf das Schreiben klarer und lesbarer Code achten sollte.

Wie versteht man! X in c? Wie versteht man! X in c? Apr 03, 2025 pm 02:33 PM

! X Understanding! X ist ein logischer Nicht-Operator in der C-Sprache. Es booleschen den Wert von x, dh wahre Änderungen zu falschen, falschen Änderungen an True. Aber seien Sie sich bewusst, dass Wahrheit und Falschheit in C eher durch numerische Werte als durch Boolesche Typen dargestellt werden, ungleich Null wird als wahr angesehen und nur 0 wird als falsch angesehen. Daher handelt es sich um negative Zahlen wie positive Zahlen und gilt als wahr.

Was bedeutet Summe in der C -Sprache? Was bedeutet Summe in der C -Sprache? Apr 03, 2025 pm 02:36 PM

Es gibt keine integrierte Summenfunktion in C für die Summe, kann jedoch implementiert werden durch: Verwenden einer Schleife, um Elemente nacheinander zu akkumulieren; Verwenden eines Zeigers, um auf die Elemente nacheinander zuzugreifen und zu akkumulieren; Betrachten Sie für große Datenvolumina parallele Berechnungen.

Bedarf die Produktion von H5 -Seiten eine kontinuierliche Wartung? Bedarf die Produktion von H5 -Seiten eine kontinuierliche Wartung? Apr 05, 2025 pm 11:27 PM

Die H5 -Seite muss aufgrund von Faktoren wie Code -Schwachstellen, Browserkompatibilität, Leistungsoptimierung, Sicherheitsaktualisierungen und Verbesserungen der Benutzererfahrung kontinuierlich aufrechterhalten werden. Zu den effektiven Wartungsmethoden gehören das Erstellen eines vollständigen Testsystems, die Verwendung von Versionstools für Versionskontrolle, die regelmäßige Überwachung der Seitenleistung, das Sammeln von Benutzern und die Formulierung von Wartungsplänen.

Wie erhalten Sie Echtzeit-Anwendungs- und Zuschauerdaten auf der Arbeit von 58.com? Wie erhalten Sie Echtzeit-Anwendungs- und Zuschauerdaten auf der Arbeit von 58.com? Apr 05, 2025 am 08:06 AM

Wie erhalte ich dynamische Daten von 58.com Arbeitsseite beim Kriechen? Wenn Sie eine Arbeitsseite von 58.com mit Crawler -Tools kriechen, können Sie auf diese begegnen ...

Kopieren Sie den Liebescode und fügen Sie den Liebescode kostenlos kopieren und einfügen Kopieren Sie den Liebescode und fügen Sie den Liebescode kostenlos kopieren und einfügen Apr 04, 2025 am 06:48 AM

Das Kopieren und Einfügen des Codes ist nicht unmöglich, sollte aber mit Vorsicht behandelt werden. Abhängigkeiten wie Umgebung, Bibliotheken, Versionen usw. im Code stimmen möglicherweise nicht mit dem aktuellen Projekt überein, was zu Fehlern oder unvorhersehbaren Ergebnissen führt. Stellen Sie sicher, dass der Kontext konsistent ist, einschließlich Dateipfade, abhängiger Bibliotheken und Python -Versionen. Wenn Sie den Code für eine bestimmte Bibliothek kopieren und einfügen, müssen Sie möglicherweise die Bibliothek und ihre Abhängigkeiten installieren. Zu den häufigen Fehlern gehören Pfadfehler, Versionskonflikte und inkonsistente Codestile. Die Leistungsoptimierung muss gemäß dem ursprünglichen Zweck und den Einschränkungen des Codes neu gestaltet oder neu gestaltet werden. Es ist entscheidend, den Code zu verstehen und den kopierten kopierten Code zu debuggen und nicht blind zu kopieren und einzufügen.

See all articles