Rumah > pangkalan data > tutorial mysql > Penjelasan terperinci tentang operasi pemadaman B-tree: Ilustrasi terperinci operasi pemadaman B-tree menggunakan Python

Penjelasan terperinci tentang operasi pemadaman B-tree: Ilustrasi terperinci operasi pemadaman B-tree menggunakan Python

WBOY
Lepaskan: 2024-01-22 14:27:09
ke hadapan
955 orang telah melayarinya

Operasi pemadaman B-tree perlu mengambil kira lokasi dan keseimbangan nod, dan aliran bawah berkemungkinan berlaku. Aliran bawah berlaku apabila nod mengandungi kurang daripada bilangan minimum nod anak yang sepatutnya dipegangnya.

Gambar dan teks menunjukkan prinsip pemadaman B-tree

tanpa menjejaskan keseimbangan.

B树删除操作详细图解 Python实现B树删除操作

Situasi aliran bawah.

B树删除操作详细图解 Python实现B树删除操作

Padamkan nod dalaman.

B树删除操作详细图解 Python实现B树删除操作

Python melaksanakan operasi pemadaman B-tree

# B树节点
class BTreeNode:
    def __init__(self, leaf=False):
        self.leaf = leaf
        self.keys = []
        self.child = []

class BTree:
    def __init__(self, t):
        self.root = BTreeNode(True)
        self.t = t

    # 插入元素
    def insert(self, k):
        root = self.root
        if len(root.keys) == (2 * self.t) - 1:
            temp = BTreeNode()
            self.root = temp
            temp.child.insert(0, root)
            self.split_child(temp, 0)
            self.insert_non_full(temp, k)
        else:
            self.insert_non_full(root, k)

    def insert_non_full(self, x, k):
        i = len(x.keys) - 1
        if x.leaf:
            x.keys.append((None, None))
            while i >= 0 and k[0] < x.keys[i][0]:
                x.keys[i + 1] = x.keys[i]
                i -= 1
            x.keys[i + 1] = k
        else:
            while i >= 0 and k[0] < x.keys[i][0]:
                i -= 1
            i += 1
            if len(x.child[i].keys) == (2 * self.t) - 1:
                self.split_child(x, i)
                if k[0] > x.keys[i][0]:
                    i += 1
            self.insert_non_full(x.child[i], k)

    # 分开子节点
    def split_child(self, x, i):
        t = self.t
        y = x.child[i]
        z = BTreeNode(y.leaf)
        x.child.insert(i + 1, z)
        x.keys.insert(i, y.keys[t - 1])
        z.keys = y.keys[t: (2 * t) - 1]
        y.keys = y.keys[0: t - 1]
        if not y.leaf:
            z.child = y.child[t: 2 * t]
            y.child = y.child[0: t - 1]

    # 删除节点
    def delete(self, x, k):
        t = self.t
        i = 0
        while i < len(x.keys) and k[0] > x.keys[i][0]:
            i += 1
        if x.leaf:
            if i < len(x.keys) and x.keys[i][0] == k[0]:
                x.keys.pop(i)
                return
            return

        if i < len(x.keys) and x.keys[i][0] == k[0]:
            return self.delete_internal_node(x, k, i)
        elif len(x.child[i].keys) >= t:
            self.delete(x.child[i], k)
        else:
            if i != 0 and i + 2 < len(x.child):
                if len(x.child[i - 1].keys) >= t:
                    self.delete_sibling(x, i, i - 1)
                elif len(x.child[i + 1].keys) >= t:
                    self.delete_sibling(x, i, i + 1)
                else:
                    self.delete_merge(x, i, i + 1)
            elif i == 0:
                if len(x.child[i + 1].keys) >= t:
                    self.delete_sibling(x, i, i + 1)
                else:
                    self.delete_merge(x, i, i + 1)
            elif i + 1 == len(x.child):
                if len(x.child[i - 1].keys) >= t:
                    self.delete_sibling(x, i, i - 1)
                else:
                    self.delete_merge(x, i, i - 1)
            self.delete(x.child[i], k)

    # 删除节点
    def delete_internal_node(self, x, k, i):
        t = self.t
        if x.leaf:
            if x.keys[i][0] == k[0]:
                x.keys.pop(i)
                return
            return

        if len(x.child[i].keys) >= t:
            x.keys[i] = self.delete_predecessor(x.child[i])
            return
        elif len(x.child[i + 1].keys) >= t:
            x.keys[i] = self.delete_successor(x.child[i + 1])
            return
        else:
            self.delete_merge(x, i, i + 1)
            self.delete_internal_node(x.child[i], k, self.t - 1)

    # 删除前节点
    def delete_predecessor(self, x):
        if x.leaf:
            return x.pop()
        n = len(x.keys) - 1
        if len(x.child[n].keys) >= self.t:
            self.delete_sibling(x, n + 1, n)
        else:
            self.delete_merge(x, n, n + 1)
        self.delete_predecessor(x.child[n])

    # 删除继任节点
    def delete_successor(self, x):
        if x.leaf:
            return x.keys.pop(0)
        if len(x.child[1].keys) >= self.t:
            self.delete_sibling(x, 0, 1)
        else:
            self.delete_merge(x, 0, 1)
        self.delete_successor(x.child[0])

    def delete_merge(self, x, i, j):
        cnode = x.child[i]

        if j > i:
            rsnode = x.child[j]
            cnode.keys.append(x.keys[i])
            for k in range(len(rsnode.keys)):
                cnode.keys.append(rsnode.keys[k])
                if len(rsnode.child) > 0:
                    cnode.child.append(rsnode.child[k])
            if len(rsnode.child) > 0:
                cnode.child.append(rsnode.child.pop())
            new = cnode
            x.keys.pop(i)
            x.child.pop(j)
        else:
            lsnode = x.child[j]
            lsnode.keys.append(x.keys[j])
            for i in range(len(cnode.keys)):
                lsnode.keys.append(cnode.keys[i])
                if len(lsnode.child) > 0:
                    lsnode.child.append(cnode.child[i])
            if len(lsnode.child) > 0:
                lsnode.child.append(cnode.child.pop())
            new = lsnode
            x.keys.pop(j)
            x.child.pop(i)

        if x == self.root and len(x.keys) == 0:
            self.root = new

    # 删除同一级的其他子节点
    def delete_sibling(self, x, i, j):
        cnode = x.child[i]
        if i < j:
            rsnode = x.child[j]
            cnode.keys.append(x.keys[i])
            x.keys[i] = rsnode.keys[0]
            if len(rsnode.child) > 0:
                cnode.child.append(rsnode.child[0])
                rsnode.child.pop(0)
            rsnode.keys.pop(0)
        else:
            lsnode = x.child[j]
            cnode.keys.insert(0, x.keys[i - 1])
            x.keys[i - 1] = lsnode.keys.pop()
            if len(lsnode.child) > 0:
                cnode.child.insert(0, lsnode.child.pop())

    # 输出B树
    def print_tree(self, x, l=0):
        print("Level ", l, " ", len(x.keys), end=":")
        for i in x.keys:
            print(i, end=" ")
        print()
        l += 1
        if len(x.child) > 0:
            for i in x.child:
                self.print_tree(i, l)

B = BTree(3)

for i in range(10):
    B.insert((i, 2 * i))

B.print_tree(B.root)
B.delete(B.root, (8,))
print("\n")
B.print_tree(B.root)
Salin selepas log masuk

Atas ialah kandungan terperinci Penjelasan terperinci tentang operasi pemadaman B-tree: Ilustrasi terperinci operasi pemadaman B-tree menggunakan Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:163.com
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan