Docker prend en charge le GPU et Docker peut utiliser le GPU via nvidia-docker2. Configurez le runtime pour utiliser nvidia dans le fichier daemon.json. Après avoir démarré le conteneur, exécutez nvidia-smi pour voir tous les GPU.
Introduction à la méthode de montage du GPU avec docker :
Utilisez nvidia-docker2
En bref, en utilisant nvidia-docker2, vous pouvez utiliser le GPU sans effort, juste ce dont vous avez besoin pour configurer le runtime. Après avoir démarré le conteneur en utilisant nvidia
cat /etc/docker/daemon.json { "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "/usr/bin/nvidia-container-runtime", "runtimeArgs": [] } }, "exec-opts": ["native.cgroupdriver=systemd"] }
, vous pouvez voir toutes les cartes GPU en exécutant nvidia-smi :
[root@localhost] docker run -it 98b41a1e975d bash root@6db1dd28459d:/notebooks# nvidia-smi +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:8A:00.0 Off | 0 | | N/A 40C P0 57W / 300W | 4053MiB / 16130MiB | 4% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla V100-SXM2... On | 00000000:8B:00.0 Off | 0 | | N/A 38C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 2 Tesla V100-SXM2... On | 00000000:8C:00.0 Off | 0 | | N/A 42C P0 46W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 3 Tesla V100-SXM2... On | 00000000:8D:00.0 Off | 0 | | N/A 39C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 4 Tesla V100-SXM2... On | 00000000:B3:00.0 Off | 0 | | N/A 39C P0 42W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 5 Tesla V100-SXM2... On | 00000000:B4:00.0 Off | 0 | | N/A 41C P0 57W / 300W | 7279MiB / 16130MiB | 4% Default | +-------------------------------+----------------------+----------------------+ | 6 Tesla V100-SXM2... On | 00000000:B5:00.0 Off | 0 | | N/A 40C P0 45W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 7 Tesla V100-SXM2... On | 00000000:B6:00.0 Off | 0 | | N/A 41C P0 44W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+
Vous pouvez ajouter une partie de la bibliothèque via NVIDIA_DRIVER_CAPABILITIES. Grâce à NVIDIA_VISIBLE_DEVICES, vous ne pouvez utiliser que certaines cartes GPU
[root@localhost cuda-9.0]# docker run -it --env NVIDIA_DRIVER_CAPABILITIES="compute,utility" --env NVIDIA_VISIBLE_DEVICES=0,1 98b41a1e975d bash root@97bf127ff83a:/notebooks# nvidia-smi Tue Oct 15 09:29:45 2019 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:8A:00.0 Off | 0 | | N/A 39C P0 57W / 300W | 4053MiB / 16130MiB | 3% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla V100-SXM2... On | 00000000:8B:00.0 Off | 0 | | N/A 37C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+
Pour plus de didacticiels connexes, veuillez faire attention à la colonne tutoriel docker du site Web PHP chinois.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!